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SUMMARY

A numerical study of tangential layers in steady-state magnetohydrodynamic rotating flows is presented
using CFD to solve the inductionless governing equations. The analysis considers two basic flow config-
urations. In the first, a fluid is enclosed in a cylinder with electrically perfect conducting walls and the
flow is driven by a small rotating, conducting disk. In the second, a flow is considered in a spherical shell
with an inner rotating sphere. The fluid in both cases is subjected to an external axial uniform magnetic
field. The results show that these flows exhibit two different types of flow cores separated from each other
by a tangential layer parallel to the axis of rotation. The inner core follows a solid-body rotation while
the outer is quasistagnant. A counter-rotating jet is developed in the tangential layer between the cores.
The characteristics of the tangential layer and the properties of the meridional motion are determined for
a wide range of Hartmann numbers. Distributions of angular velocity of circumferential flow and electric
potential are obtained and the results are compared with those of analytic methods. Copyright q 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Liquid–metal magnetohydrodynamic (MHD) flows are important in various applications and, in
particular, in fusion technology. Because of the non-linearity of the governing equations, several
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challenging problems arise and the development of relatively simple but non-trivial models is
most useful for a better understanding of the physical processes. Besides their scientific interest,
the models considered in this work permit reliable predictions of the flow and the electric
field that could be tested experimentally. MHD rotating flows in cylindrical and spherical shells
under axial magnetic fields depend strongly on the imposed magnetic field and on the applied
kinematic and electrodynamic boundary conditions. They are axisymmetric in nature, known
in the relevant literature as 21

2D flows, and are of scientific interest to the MHD research
community.

In the present work, the effect of a uniform axial magnetic field on the laminar, steady axisym-
metric rotating flow of an electrically conducting fluid is investigated. The fluid is enclosed between
two coaxial shells (cylindrical or spherical), with the inner rotating and the outer at rest. The walls
in contact with the fluid are electric equi-potential surfaces. Irrespective of the magnetic field, the
momentum imparted by the rotating disk or sphere (via the viscous action) establishes a pressure
distribution in the fluid. The basic objective of the study is to investigate numerically MHD flows
in rotating shells using an inductionless approach for low and moderate Hartmann numbers. The
main intention is the estimation of the viscous effects in a range of Ha numbers, where asymp-
totic theory no longer applies. Thus, for reasons of brevity and clarity, only necessary numerical
details are presented here, and the interested reader is referred to specific published articles or
textbooks.

The results show that these flows develop two different types of flow cores, separated from
each other by a tangential layer that is parallel to the main axis of rotation. The inner core may
be considered to follow a solid-body rotation while the outer is quasistagnant. A counter-rotating
jet is developed, which is located in the tangential layer between the cores. The quantitative
characteristics of the tangential layer are determined and the properties of the meridional motion
are investigated for a wide range of Hartmann numbers. Circumferential and angular velocity fields
as well as distributions of the electric potential are obtained and the results are compared with
those of analytic methods [1].

Several authors have studied analytically, numerically and experimentally the axisymmetric
rotation of a conducting fluid for geometries with different aspect ratios, various orientations of
the magnetic field and different values of conductance of the solid boundaries. In the following,
only the previous studies directly relevant to the present problem will be discussed.

Antimirov and Molokov [2] employed the method of matched asymptotic expansions to study a
steady-state MHD flow driven by a rotating body in a strong, external co-axial magnetic field. The
rotating body ejects and absorbs electric current into and from the surrounding fluid and drives,
thereby, the rotational motion of the fluid by Lorentz forces. Two major cases were considered;
the non-conducting and the super-conducting disk of finite size, where the fluid extends axially
and radially to infinity. They specified a map where a ‘column’ of the conducting liquid rotates
at half the angular velocity of the insulating disk. This column rotates at the same angular disk
velocity, when it is perfectly conducting. They also defined a region outside of the column where
the fluid is at rest, in the first case, and in slight motion in the second. When the fluid is confined
in a finite domain, the flow behaves quite differently. Thus, during the rotation of the conducting
fluid, a counter-rotating jet is formed at the edge of the rotating disk, as it has been reported by
Hollerbach and Skinner [3].

Bessaih et al. [4] investigated numerically the flow in a conducting and/or insulated cylindrical
cavity with a rotating end-wall under a strong magnetic field. The simulation was performed using
the inductionless approach and the results were compared with asymptotic solutions neglecting
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inertial effects. Kharicha et al. [5] dealt with the flow driven by one rotating end of a cylindrical
cavity filled with a liquid metal. The study was performed for Re�100 and 0�Ha�100 and was
focused on thin walls. The aim was to assess the influence of the magnetic field on the corrosion
rate caused by the flow of a liquid metal along a metallic wall. One of the conclusions, related to
the present study, was that the azimuthal flow is organized into a main core, Hartmann layers and
parallel layers. The core flow exhibits a linear variation of circumferential velocity along the axial
direction. Bessaih et al. [4] and Kharicha et al. [5] found a solid-body rotation near the axis. Near
the tangent wall the velocity exceeds that of the solid-body rotation and decreases beyond it, in
order to satisfy the no-slip condition at the outer wall.

Molokov [6] studied the flow caused by the rotation of an axisymmetric body at constant angular
velocity in an external uniform co-axial magnetic field, assuming an infinite flow domain. The fluid
follows a solid-body rotation at the same angular velocity only in two extreme cases, when the
body is either non-conducting or super-conducting. Molokov also noticed that the perturbations,
due to the rotation of a sphere, propagate a large distance along the magnetic field. Dormy et al. [7]
studied numerically the fluid motion generated in a rotating spherical shell by a slight differential
rotation of the inner core in the presence of a magnetic field. Their work suggested the need of a
numerical algorithm to solve the thin boundary layers without over-increasing the number of grid
points. Starchenko [8] gave an analytic solution for the problem of almost-rigid body rotation of
viscous, conducting, spherical layers of a liquid in an axisymmetric magnetic field. Among others,
he formulated a description of the shear MHD layers that smoothed out the large gradients at the
boundaries of the MHD structures.

Hollerbach and Skinner [3] investigated numerically the flow of an electrically conducting
fluid in a spherical shell, with the inner sphere rotating and with a strong magnetic field
imposed parallel to the axis of rotation. They noticed the existence of a strong, counter-
rotating jet. One of their main conclusions was that, depending on the boundary conditions,
the basic state consists of either a shear layer or a counter-rotating jet, both located near
the rotating body and becoming thinner and faster, respectively, with increasing magnetic
field.

Bühler [1] examined the cases of concentric annular MHD flows using asymptotic methods
and showed two different types of cores, which are separated from each other by a tangent shear
layer. The inner core performs solid-body rotation while the outer remains entirely stagnant.
The fluid near the moving body follows mainly its rotation. The angular velocity of the rotating
core decays along the magnetic field lines and vanishes at the non-moving outer wall. The two
cores are separated from each other by a viscous layer, tangential to the rotating cylinder where
the fluid rotates at high speed in the opposite sense. With increasing magnetic field, the layer
becomes thinner and the velocity increases. This fluid behaviour may be due to the difference
in the electric potential between the edges of the inner (rotating) and the outer (stationary) fluid
core.

Although electrically driven MHD flows are not presently considered, the work of Hunt and
Malcolm [9] is mentioned here, who studied experimentally and described analytically a series of
such flows. They placed two non-rotating disks on the top and bottom of an insulating container
of mercury to which they applied an electric potential difference. They noticed the existence
of a thin layer, which is very similar to that of the present work. They also found that a thin
layer was created which joined the two disks. In its interior, a large radial electric field and
a high circumferential velocity were induced, which increased as the magnetic field became
stronger.
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2. MATHEMATICAL FORMULATION

2.1. Governing equations

The governing equations for the steady state, inductionless magnetohydrodynamic flow of an
incompressible viscous fluid may be written in dimensionless form as follows:

Momentum conservation:

(v ·∇)v=−N∇ p+ 1

Re
∇2v+N (j×B) (1)

Ohm’s law-for moving conducting fluids:

j=−∇�+v×B (2)

Fluid mass, electric charge conservation:

∇ ·v=0, ∇ ·j=0 (3)

In the above equations, v and j are the dimensionless velocity and current density vectors, respec-
tively, B is the externally applied uniform magnetic induction (the induced field being neglected in
the presently adopted low-Rm approximation), and p and � are the pressure and electric potential,
all scaled by their reference quantities: u0, j0=�u0B0, B0,�u0B2

0 L and u0B0L , respectively. This
scaling, in particular, the reference quantity for the pressure is convenient for strong magnetic
fields and it has been used to derive asymptotic solutions of the governing equations [1].

The characteristic velocity u0 is the azimuthal velocity of the rotating body at the symmetry
plane and the characteristic length L is the radius of the rotating body. B0 is the magnitude of the
externally applied magnetic induction. The fluid density �, electric conductivity �, and kinematic
viscosity � are assumed to be constant. The flow is controlled by two dimensionless parameters,
namely the Hartmann number, Ha, (or interaction parameter, N ) and the Reynolds number, Re,
defined as:

Ha= B0L
√

�

��
(4)

N = �LB2
0

�u0
= Ha2

Re
(5)

Re= uoL

�
(6)

It should be noted that the square of the Hartmann number represents the ratio of the electromagnetic
to viscous forces while the interaction parameter indicates the ratio of the electromagnetic to
inertia forces. From Equation (2), assuming that the magnetic induction is parallel to the axis of
rotation (B=z0, where z0 the unit vector in the z-direction) and taking into account that the flow
is axisymmetric, the three components of Equation (1) in cylindrical coordinates read

Re

Ha2
(Vr�r Vr+Vz�zVr−�2r)=−�r p+ 1

Ha2

(
�Vr− Vr

r2

)
−Vr (7)

Re

Ha2

(
Vr�r�+Vz�z�+ 2

r
�Vr

)
= 1

Ha2

(
��+ 2

r
�r�

)
+ 1

r
�r�−� (8)
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Re

Ha2
(Vr�r Vz+Vz�zVz)=−�z p+ 1

Ha2
(�Vz) (9)

where Vr,Vz are the radial and axial velocities, respectively, V� =�·r is the circumferential velocity,
and � is the angular velocity of the fluid. In addition, for the present axisymmetric flows, the
Laplacian operator for a variable f is given in cylindrical coordinates by:� f =�2rr f + 1

r �r f +�2zz f .
From Equations (2) and (3) it follows that

��=2�+r�r� (10)

Equation (10) is solved numerically in the same manner as the transport Equations (7)–(9).
Finally, the mass continuity for the present incompressible fluid must be added:

1

r
�r (rVr)+�zVz =0 (11)

2.2. Boundary conditions

The geometry of the rotating disk in the cylindrical container (case A) and the coordinate system
are shown in Figure 1(a). The liquid metal fills a cylinder of radius R=3 and height Z =3 and it
is submitted to an axial magnetic field B=z0. The upper and the vertical (right) boundaries form
the perfectly conducting walls of the cylindrical shell. The left boundary is the symmetry axis
while the conducting zero-thickness rotating disk is placed at the bottom (0<r<1). A symmetry
condition is applied to the rest of the lower boundary (1<r<R).

The geometry and the coordinate system of the two concentric perfectly conducting spheres
(case B) are presented in Figure 1(b). An inner sphere rotating at constant speed is driving the
conducting fluid flow while the outer sphere is stationary. The radius of the inner sphere is r =r0=1
and of the outer r = R=3. Moreover, symmetry is assumed with respect to the plane z=0.

Closure of the electric currents depends strongly on the electric properties of the walls and
consequently, the Lorentz force and the velocity field are governed by these properties. In general,

Figure 1. Geometry and boundary conditions for the rotating disk in a cylinder (a) and for the sphere
rotating in a spherical shell (b).
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the electromagnetic boundary conditions depend mainly on the ratio of wall-to-fluid conductivity,
and on the ratio of wall thickness to the fluid depth [10]. In the present study, where the walls
are assumed perfect electric conductors, we may take that �=0 at the outer walls. The electric
potential at the rotating body is a known function �(r) of radius as described below. At all solid
boundaries a no-slip condition is assumed, implying that at the outer walls the velocity vanishes,
while the fluid moves with the same speed at the rotating body.

The boundary and symmetry conditions for the velocity and electric potential are

�r�=0, �r Vz =0, Vr =0, �r�=0 for r =0,0<z<Z (12)

�=1, Vz =0, Vr=0, �=�b(r) for z=0,0<r<1 (13)

�z�=0, Vz =0, �zVr=0, �z�=0 for zb=0 and 1<r<R (14)

�=0, Vz =0, Vr=0, �=0 for r = R,0<z<Z (15)

where zb denotes the contour of the rotating body (zb=0 for the disk, zb=√
1−r2 for the sphere).

For a perfectly conducting body, the current density is negligible in comparison with the potential
gradient and the induced electric field. For rotation at constant angular velocity of circumferential
flow �=1, and B=z0, this implies that

∇�b=v×B⇒∇�b=V�r=(�·r)r (16)

and finally

�r�|b=r (17)

The electric potential for the rotating body, Figure 2, is obtained by integration:

�b=
∫ 1

0
(�r�|b)dr = 1

2
r2+C (18)

Figure 2. Boundary condition of the electric potential over the rotating disk.
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The integration constant C is determined in such a way that the currents entering the body are
balanced by those leaving it. This gives for the rotating disk (case A) the condition that

∫ r=1

r=0
(�z�|b)2�r dr =0 at z=0 (19)

For the rotating sphere (case B), the integral current upon the spherical surface should vanish.
From Equation (2) the wall-normal current becomes

jn =(−∇�+v×B) ·n (20)

and the global balance of charge at the rotating sphere is∫
s
jn2�r ds=

∫
s
(−�n�)2�r ds+

∫
s
�r(r ·n)2�r ds=0 (21)

where s denotes the length along the body contour.
As the radial potential gradient is cancelled by the second term of the right-hand part of Equation

(21), it follows:

I =
∫
s
jn2�r ds=

∫ 1

0
jz2�r dr =

∫ 1

0
(−�z�|b)2�r dr =0 at z=

√
1−r2 (22)

The values of C in Equation (18) for the two rotating bodies (cases A and B) are obtained using an
implicit iterative procedure in such a way that the integral constraints (19) and (22) are satisfied by
calculating: C ′

i =−∑
(�z�|b)ir r drr ∀r ∈[0,1]∧zb=0, for the disk and ∀r ∈[0,1]∧zb=√

1−r2,
for the sphere, while under-relaxation is used to achieve convergence with relative errors smaller
than 1.0E–05.

3. NUMERICAL DETAILS

To carry out the numerical simulations, the CFD code CAFFA [11] was extended to a solver
suitable for MHD flows. The original version of the code was made available in the Internet
(ftp://ftp.springer.de/pub/technik/peric/). This code solves the Navier–Stokes equations for 2D
incompressible flows, using finite volumes and structured, collocated curvilinear grids. The code has
been recently modified to include more complex discretization schemes by Baxevanou and Vlachos
[12]. Furthermore, Fidaros [13] extended the code to account for the Lorentz force appearing in
MHD flows, incorporating also faster algorithms for the solution of the resulting linear systems.
The Lorentz force is calculated implicitly according to the method described by Cho [14] for
inductionless applications. The modified code is now capable to solve both MHD inductionless
and full induction problems for incompressible flows, calculating the electric potential and the
components of the magnetic induction, respectively. To limit the long execution times, fast Krylov
space algorithms for the solution of linear systems have been incorporated.

Equations (7)–(11) have been solved using a finite volume method coupled to a pressure
correction based on the SIMPLEC algorithm (see Van Doormaal and Raithby [15], Versteeg and
Malalasekera [16]) as described by Ferziger and Peric [11] on a non-uniform collocated grid. It
should be noted that all SIMPLE-like solution algorithms obtain the pressure field, via the so-called
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pressure correction equation. This ensures mass conservation via Equation (11), at each compu-
tational cell, by updating the velocities obtained from the momentum equations and the pressure
field of the previous iteration. The SIMPLE algorithm uses an iterative procedure to calculate the
pressure and velocity fields. Starting from initial guessed values, its principal steps are as follows:

(a) Solve the discretized momentum equations to yield intermediate velocities (V ∗
r ,V ∗

z ).

apV
∗
r,p=

∑
anbV

∗
r,nb−

	p∗

	r
�V+SVr�V and apV

∗
z,p =∑

anbV
∗
z,nb−

	p∗

	y
�V+SVz�V (23)

(b) Satisfy local mass continuity in the form of an equation for pressure-correction, p′

ap p
′
p =∑

anb p
′
nb+Sp′�V (24)

(c) Correct pressure and velocities:

pp = p′
p+ p∗

p (25)

Vr,p =V ∗
r,p+ 1

ap
	p′	z (26)

Vz,p =V ∗
z,p+ 1

ap
	p′	r (27)

(d) Solve the discretized transport equations for each scalar property, �.

ap�p =∑
anb�nb+S��V� (28)

(e) Use the new values and repeat steps (a)–(d) until the p, Vr, Vz and � fields are all converged.

All the scalar quantities � are solved implicitly using under-relaxation to ensure solution stability.
Following the steps required by the SIMPLE algorithm, the quantities Vr,�,Vz and � are calculated
implicitly from Equations (7)–(10), respectively. All properties and terms in the transport equations
are calculated implicitly and consequently the terms of the centrifugal and Lorentz forces.

The solution was obtained in the meridional plane (r–z) by solving Equations (7), (9) and (11)
for Vr, Vz and p, respectively. These values were then used to obtain � from Equation (8). The
electric potential � was subsequently computed from Equation (10) using the values of � in the
meridional plane. The spatial, advection and diffusion terms in every equation are discretized with a
second-order central difference scheme. The central difference scheme is a second-order numerical
scheme providing significantly less numerical (artificial) diffusion, which is essential to this kind
of computations. The BiCGSTAB of Krylov space solver predefined by the MSI algorithm [17, 18]
was adopted for the numerical solution of the linear set of algebraic equations.

The convergence criterion for all equations solved was set to 1.0E−06, while a typical execution
required about 6 h of CPU time on a personal computer with a 4GHz CPU and 512MBRAM. These
long execution times were due to the slow convergence of the electric potential equation, since
the continuously changing boundary values over the rotating body imposed very low relaxation
factors, necessary to avoid undesirable numerical oscillations of the velocity field.

The non-uniform grids used for the two geometries are depicted in Figure 3. The proper
refinement of the grid is of great importance in order to calculate accurately the very high gradients
of velocity and electric potential. The grid for case A (rotating disk in cylindrical shell) consists
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Figure 3. Computational grids for the disk (a) and for the sphere (b).

of 215×270 structured cells and it is finer in two major areas, near the axis and the edge of the
rotating disk (r =1) because the high gradients of the angular velocity of the circumferential flow
and of the potential in these regions must be resolved properly. For case B (spherical shells), the
grid was composed of 210 cells in the outer curvilinear direction and 220 in the radial and it was
also finer in two major areas, near the axis and right above the rotating body.

Before the final calculations, the model was successfully validated against the results of Bessaih
et al. [4] and Kharicha et al. [5] for low and moderate Ha numbers, and those of Hunt and
Malcolm [9] for high Ha numbers. In particular, the MHD flow driven by an applied voltage
between two circular fixed disk electrodes placed coaxially at two insulating Hartmann walls was
studied by Hunt and Malcolm [9]. They noticed the formation of an inner and an outer stagnant
core when a voltage was applied between the circular electrodes in mercury at rest. A shear
layer developed between the two cores, similar to the present jets, with increasing velocity and
decreasing thickness, as the magnetic field was increased. Thus, simulations were performed in
order to reproduce the jet formation of the above experiment, using a non-uniform collocated
structured mesh with 250×250 cells. Figure 4 shows a comparison of the predicted (filled circles)
maximum circumferential velocity of the shear layer with the results of an asymptotic analysis by
Bühler [1] of the above experiment (continuous line). The agreement between the numerical and
the analytic results is excellent.

In addition, grid independence tests were carried out before the final simulations. Table I
shows the results of a grid independence test for the case of the spherical shell using two Ha
values (200, 300), two convergence criteria (1.0E−05, 1.0E−06) and four different grid sizes
(130×140,160×170,190×200,210×220). The differences in the predicted magnitude of the
maximum angular velocity of the counter-rotating jet and the analytic solution of Bühler [1] are
10% for the coarser grid and less than 0.5% for the finer mesh and the higher convergence criterion.

Finally, it should be noted that the numerical methods used here are fairly standard as the
emphasis of the present work was in the MHD aspects of the numerical model. However, there
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Figure 4. Comparison of the predicted maximum circumferential velocity of the shear layer with that of
the asymptotic analysis by Bühler [1] of the experiment of Hunt and Malcolm [9].

Table I. Grid independence test for the spherical shell case.

Grid size

Ha 130×140 160×170 190×200 210×220 Analytic Bühler [1]
Convergence criterion e=1.0E−06
200 1.5372 1.6180 1.7014 1.7232 1.7235
300 1.9471 2.0637 2.1712 2.1944 2.1949

Convergence criterion e=1.0E−05
200 1.5265 1.6085 1.6739 1.7202 1.7235
300 1.9258 2.0518 2.1266 2.1897 2.1949

are a number of modern numerical methods for incompressible flows, as described by Drikakis
and Rider [18] while an interesting work on MHD flow modelling is that of Ni et al. [19].

4. RESULTS AND DISCUSSION

4.1. Hydrodynamic case (Ha=0)

For the hydrodynamic case, Equations (7)–(9) and (11) were solved for Ha→0, i.e. for a vanishing
magnetic field. Note that for this case, Equation (1) reduces to the hydrodynamic Navier–Stokes
equation, where the quantity (Ha2/Re)p, representing pressure in usual hydrodynamic units, �u20,
remains finite.

Results of angular velocity of circumferential flow and streamlines of the meridional motion
(driven by centrifugal forces) for Re=1 are shown in Figures 5 and 6 for the rotating disk and
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Figure 5. Hydrodynamic flow above a rotating disk (case A) for Re=1, Ha=0: angular velocity of
circumferential flow (a) and streamlines (b) of meridional motion.

Figure 6. Hydrodynamic flow above a rotating sphere (case B) for Re=1, Ha=0: angular velocity of
circumferential flow (a) and streamlines (b) of meridional motion.

the sphere, respectively. The body rotation causes a revolution of the fluid, which at some distance
from the body is driven by viscous shear and exchange of momentum due to the meridional motion.
The angular fluid velocity decays from the value of �=1 at the rotating body to �=0 at the outer
shell. The angular velocity of circumferential flow � of the fluid just above the rotating body is
higher than everywhere in the cavity and decays along the z-direction. The reduction of � is more
intense in the radial than in the axial direction.

4.2. Magnetohydrodynamic case (Ha>0)

When the magnetic field is imposed, the behaviour of the fluid is modified. For small Hartmann
numbers (Ha<10) the changes in the flow are minor, but noticeable. The flow pattern starts
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Figure 7. MHD flow above a rotating disk (case A) for Re=1. A weak reverse angular velocity appears
at Ha=3 (right), not observed at Ha=2 (left).

Figure 8. MHD flow above a rotating sphere (case B) for Re=1. A weak reverse angular velocity appears
at Ha=2 (right), not observed at Ha=1 (left).

stretching along the axial direction and contracting in the radial in such a way that it is mainly
confined to the interior of the so-called tangent cylinder at r =1 that forms at the edge of the
rotating body along magnetic field lines. Outside the tangent cylinder the flow starts rotating in
the reverse direction at Ha between 2 and 3 for the disk (case A) and between Ha=1 and 2 for the
sphere (case B) as shown in Figures 7 and 8, respectively. For strong magnetic fields (Ha>10) two
cores are observed inside and outside the tangent cylinder. The rotation of the inner core decays
linearly along the magnetic field lines from �=1 at the disk or sphere to �=0 at the external wall,
while the outer core is practically stagnant. The viscous tangent layer in which a strong reverse
flow appears, matches smoothly the velocity difference in the two cores at r =1. The intensity of
this reversed flow increases with increasing Ha while the layer thickness decreases. Results of the
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Figure 9. Distribution of angular velocity of circumferential flow �(r, z) for a rotating disk (case A).
Formation of counter-rotating jet with increasing Ha.

Figure 10. Angular velocity of circumferential flow �(r, z) for a rotating sphere (case B). Formation of
counter-rotating jet with increasing Ha.

angular velocity of circumferential flow are shown for the rotating disk in Figure 9 and for the
rotating sphere in Figure 10. It seems worth noting that, for the case of the rotating disk, there
are not viscous Hartmann layers forming at the disk and at the outer wall. The core solution here
satisfies already the kinematic and electric boundary conditions.

For the case of the rotating sphere, Figure 10, a similar behaviour is observed. There exists an
inner core rotating in the sense of the body, a stagnant outer core and a counter-rotating viscous
layer that connects smoothly the solutions in both these cores. The electric potential in the core
seems to satisfy again the boundary condition at the inner sphere so that for this quantity the
viscous Hartmann layers are also unimportant. For the angular velocity of circumferential flow,
however, the situation is different. The fluid core above the sphere rotates faster than the sphere
itself close to the axis and slightly slower for r>0.5. As a result there appears now a viscous
Hartmann layer (see Figure 11) that matches the core solution with the no-slip boundary condition
at the surface of the body. This type of behaviour has been already predicted by the asymptotic
method of Bühler [1] and by the numerical simulations of Hollerbach and Skinner [3].
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Figure 11. Distribution of angular velocity of circumferential flow �(r, z) for a rotating sphere (case B).
Enlarged view shows the Hartmann layers at the inner sphere.

Figure 12. Electric potential fields for the cylindrical (a) and the spherical (b) shells.

The distribution of electric potential in the inner core remains approximately the same for all
values of Ha studied (see Figure 12). The local value of the potential at the edge (r =1) determines
the magnitude of the jet at the symmetry plane. It should be noted that the local potential gradients
appearing at the edge of the rotating disk become steeper as Ha increases. This is caused by the
fact that the potentials in both cores approach final values as Ha increases while the thickness of
the layer decreases. As shown in Figure 12(a) the pattern of electric potential is divided into an
inner and an outer core. The inner core (r<1) is due to the imposed boundary condition on the
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rotating disk with a linear variation of the potential along the z-axis. The outer core potential is
preserving the boundary value (�=0) imposed by the perfectly conducting walls. For Ha�1 the
electric potential approaches the relation

�(r, z)=
(
1

2
r2+C

)(
Z−z

Z

)
(29)

where r and z are the radial and axial coordinates and in this case the function Z is simply a
constant, namely Z(r)=3, the total width of the fluid domain measured from the symmetry plane
along the magnetic field lines at radial position r . The maximum value of the electric potential
tends to reach the value 
(r =1, z=0)=0.25 at the edge of the rotating disk as Ha→∞, in
accordance with the asymptotic theory. Viscous effects in the parallel layer determine its width at
r =1, i.e. the thickness of the layer depends on the Hartmann number.

All the preceding observations about the electric potential for the case of the rotating disk are
valid also for the rotating sphere. The potential along the rotating sphere is proportional to r2

and decays, for strong magnetic fields, linearly along z to zero at the outer wall. For Ha�1, the
potential in the inner core approaches the distribution

�(r, z)=
(
1

2
r2+C

)(
Z−z

Z−Zb

)
(30)

where now Z(r)=√
R2−r2 and Zb(r)=

√
R2
b−r2 denote the total extension of flow domain

measured along the magnetic field lines at position r , the quantities R and Rb being the radii
of the outer and inner shells, respectively. The value of C differs from that of the rotating disk
case, and numerical simulations performed for R=3 confirm the trend that the highest potential
values in the horizontal symmetry plane approach those obtained earlier by asymptotic theory
�(1,0)→0.2613 as Ha→∞.

The influence of fluid inertia introduced by centrifugal forces for finite Reynolds numbers leads
to a meridional motion in the r–z plane as already shown in Figures 5 and 6. The strongest
meridional motion is observed for the hydrodynamic case (Ha=0), which is progressively damped
with increasing magnetic field. The kinetic energy of the meridional motion defined here as

E=
∫ R

0

∫ Z(r)

Zb(r)
(V 2

r +V 2
z )2�r dz dr (31)

is used as a measure to quantify the intensity of magnetic damping.
For the present flows, E depends on the Reynolds and Hartmann numbers, and in the absence of a

magnetic field exclusively on Re. For the hydrodynamic flow, with fixed Reynolds number Re=1,
the kinetic energy of the meridional motion is E0=2.81×10−4 for case A, and E0=1.46×10−4

for case B. These values are used to normalize the MHD results shown in Figure 13. When the
formation of the two cores and the parallel layer has been established, the meridional motion is
weakened significantly. Consequently, the kinetic energy of the meridional motion is considerably
lower compared with the one of the pure hydrodynamic case.

Figure 13 shows the influence of the magnetic field on the intensity of the meridional fluid
motion for both cases studied. It is interesting to note that the kinetic energy of the meridional
motion for the rotating disk decays like Ha−3 for strong magnetic fields (Ha>20) while for the
case of the rotating sphere it decays like Ha−2. Even before Ha reaches 100, the meridional motion
has already lost roughly four orders of magnitude of its kinetic energy. This result confirms that
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Figure 13. Variation of kinetic energy E of meridional motion with Ha (normalized by E0 of the
hydrodynamic flow) for the cylindrical (a) and the spherical (b) shells.

the meridional fluid motion (driven by inertia) is clearly negligible at high Ha and it is important
since meridional motions have been disregarded in asymptotic methods. However, for low Ha, the
meridional motion affects the development of the jet and the core flow in a way that cannot be
described fully by analytic methods.

The raising of Ha reduces the width and increases the maximum velocity of the counter-rotating
shear layers. The reversed jet in the tangent layer establishes a balance between viscous and
electromagnetic forces. It is known that, for Ha�1, the velocity and thickness of parallel layers,
in which such regimes are present, scale like u∼Ha1/2 and 	∼Ha−1/2. This asymptotic behaviour
is confirmed by the results for the angular velocity of circumferential flow, which scale by Ha1/2

as a function of the stretched radial coordinate:

x=(r−1) ·Ha1/2 (32)

Figure 14 shows scaled velocity profiles in the tangential layer with respect to the stretched layer-
normal coordinate. With increasing Ha, the profiles of circumferential velocity coalesce to a similar
graphical representation. Indeed, the lines corresponding to high Ha cases have almost identical
shape, giving a sense of asymptotic behaviour.

Figure 15 shows the maximum magnitude of the angular velocity of circumferential flow in
the tangential layer. For low or moderate Hartmann numbers, the velocities differ and in fact are
smaller than the asymptotic predictions. This is not surprising, since the asymptotic theory does not
apply for such small Ha values. The influence of viscosity is strong enough to reduce the maximum
velocity in the layer for smaller Ha. This is taken properly into account by the present numerical
model, which solves the full transport equations including viscous and inertial terms. For higher
Ha, the numerical values of �max increase and converge monotonically towards the asymptotic
solutions. It is found that for both cases (disk and sphere) the maximum angular velocity of
circumferential flow scales as �max∼Ha1/2 for Ha�1, in agreement with the asymptotic theory.

The results for the sphere follow the asymptotic solution precisely (even better than those of
the disk) for high Hartmann numbers and they are in very good agreement with the analytical
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Figure 14. Variation of normalized circumferential jet velocity (−V�/
√
Ha) with respect to the stretched

layer-normal coordinate x=(r−1)
√
Ha.

Figure 15. Comparison of numerical and asymptotic results of �max in the parallel layer at various Ha,
for the cylindrical (a) and the spherical (b) shells.

predictions of Bühler [1]. A reason for this good agreement is the curvature of the inner spherical
boundary. The non-orthogonal inclination of the boundary with respect to the magnetic field leads
to a thickening of the Hartmann layers that are now easier to resolve numerically near r =1.
Moreover, the global behaviour seems to be less ‘singular’ in the sense that the numerical solutions
verify that, for the sphere

�z�sphere(z=0+)=�z�sphere(z=0−)=�z�(z=0)=0 at r =1 (33)

while for the disk

�z�disk(z=0+) �=�z�disk(z=0−) �=�z�=0 at r =1 (34)
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where �sphere and �disk stand for the fluid potential at the sphere and the disk, respectively. This
leads finally to a better performance of the numerical model for the case of the rotating sphere
which yields smooth solutions near r =1. The case of the rotating disk, however, shows a singular
behaviour for �z� at the edge of the disk, which increases the computational difficulties for this
type of flows.

From an engineering point of view it is interesting to know the torque that is necessary to rotate
the disk or the sphere at a desired speed. Since the rotating disk is electrically conducting, it is
necessary to overcome the braking torque created by viscous stresses at the surface of the rotating
body plus the electromagnetic torque due to the circumferential Lorentz forces on the conducting
body. Details for the derivation of the expressions for the torques are presented in the Appendix.

The viscous part of the torque is obtained by integration of the viscous stress over the surface
of the rotating body

Tv= 2�

Ha2

∫
S
�nV�r

2 ds (35)

where ds is a line element along the contour of the rotating body.
The total radial current that creates the braking Lorentz torque on the body is calculated from

the balance of the current density entering and leaving the body, yielding the total electromag-
netic torque:

TEM=
∫ 1

0
I (r)r dr =−2�

∫ 1

0

(∫ r

0
�z�r ′ dr ′

)
r dr (36)

Figure 16 shows the evolution of the electromagnetic torque TEM and the ratio of electromagnetic
to viscous torque TEM/Tv for the cylindrical (case A) and spherical (case B) shells at different
values of Ha. For high Hartmann numbers, the electromagnetic torque on the disk approaches

Figure 16. Variation of electromagnetic torque and ratio of electromagnetic to hydrodynamic torque with
Ha for the disk (a) and the sphere (b).
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the constant value: TEM→−�/48Z =−0.0218 for the present calculations with Z =3, while the
viscous torque is negligible in comparison with the electromagnetic one.

5. CONCLUSIONS

A numerical study of MHD flows in rotating cylindrical and spherical shells was performed with
the aim to enhance the existing knowledge and to assess basic assumptions for treating these flows
by asymptotic techniques. The present CFD model uncovered the main flow features previously
observed.

For high Hartmann numbers, the results exhibit two different types of flow cores, one inside the
tangent cylinder parallel to the magnetic lines, and the other outside it. The cores are separated by
a thin, viscous tangential layer in which the fluid reaches the highest circumferential velocities.
The inner core follows a solid-body rotation with the fluid near the perfectly conducting body
rotating at the same angular velocity, which decays linearly in the axial direction. The outer core
instead is practically stagnant.

In the case of the rotating disk, the Hartmann layers are absent since the obtained core solu-
tion satisfies already the no-slip boundary conditions at the disk and the outer walls. For the
rotating sphere, instead, the inner core rotates faster than the sphere near the axis and slower
close to the tangent cylinder. This is caused by the curvature of the inner and the outer bound-
aries and by the Hartmann length, i.e. the height of the gap measured along magnetic lines. As a
result, there appear Hartmann layers at the rotating sphere, across which the no-slip condition is
satisfied.

The properties of the counter-rotating jet that forms at the tangent cylinder parallel to magnetic
lines at the edge of the rotating body were investigated in detail. The effect of the magnetic field
on the velocity and thickness of the jet and the intensity of the meridional fluid motion were
also assessed. The raising of Ha reduces the thickness of the tangential layer as 	∼Ha−1/2 and
increases its counter-rotation like �∼Ha1/2. The kinetic energy of the meridional motion driven
by centrifugal forces is reduced proportional to Ha−3 for the disk and Ha−2 for the sphere, and it
is already negligible at Ha>20 compared with the hydrodynamic case.

The electric potential develops strong gradients in the transitional ‘column’ at the tangent
cylinder. Its distribution in the inner core follows a linear decay in the axial direction and vanishes
at the outer boundary. The driving mechanism of the rotating flow is the radial gradient of the
potential that is observed in the inner core. However, the highest potential gradient (of opposite
sign to that in the core) is observed in the symmetry plane at the perimeter of the rotating body,
causing the highest counter-rotating velocities.

For the higher Ha values studied, all calculated quantities in the cores are in good agreement with
asymptotic theory. The results obtained in the tangential layer differ slightly from those derived
by analytic methods for the case of the rotating disk but they confirm the asymptotic behaviour.
Very good agreement is achieved for the rotating sphere for which a proper numerical resolution
of the Hartmann layer could be achieved easier, since this layer is not as thin as for the disk.
Although the Hartmann layers do not carry a significant amount of electric current in these flows,
their proper numerical resolution appears to be the key for accurate simulations.

The present work complements the known results, especially for perfectly conducting walls, and
supports the asymptotic theory, usually applied for high Ha where meridional fluid motions are
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neglected a priori. For lower Ha, however, where the asymptotic theory is not valid, the present
numerical model yields more reliable results.

APPENDIX A

Viscous torque: The differential viscous torque of a surface element dA=2�r ds at a distance r
from the axis is given by the product:

dTV=r dF (A1)

where dF=�dA is the differential circumferential viscous force due to the shear stress

�= 1

Ha2
�nV� (A2)

The integration of (A1) along the contour of the rotating body yields the viscous part of the torque
(for the sphere and disk) as

Tv= 2�

Ha2

∫
S
�nV�r

2 ds (A3)

where ds is a line element along the contour of the rotating body.
Electromagnetic torque: The total radial current that creates the braking Lorentz force on the

body is calculated from the balance of the current density entering and leaving the body. The
integration of this quantity along the contour of the body determines the total current I (r) that
flows radially in the revolving body

I (r)=
∫ S

0
jn2�r ds=

∫ r

0
jz2�r dr =−2�

∫ r

0
�z�r dr (A4)

creating at position r the elemental circumferential Lorentz force

dF= I (r)dr (A5)

Integration of the differential electromagnetic torque

dTEM=r I (r)dr (A6)

yields the total electromagnetic torque as

TEM=
∫ 1

0
I (r)r dr =−2�

∫ 1

0

(∫ r

0
�z
r ′ dr ′

)
r dr (A7)

In the case of the rotating disk where ds=dr and �n =�z , the torques may be calculated for high
Ha. Then, the azimuthal velocity V� and the potential � may be represented by

V� =
(
1− z

Z

)
r (A8)

and

�=
(
1− z

Z

)(
1

2
r2− 1

4

)
(A9)
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It follows that the torques asymptotically are given by

TV=− 1

Ha2
2�

Z
(A10)

and

TEM=− �

48Z
(A11)

and, for Z =3, the electromagnetic torque on the disk approaches the constant value: TEM→
−0.0218, a result that has been verified numerically.

Similar analytic calculations are not possible for the case of the rotating sphere because of the
existence of the additional Hartmann layer above the sphere.

NOMENCLATURE

ai link coefficient in discretized equations
A surface area
B magnetic induction vector
Bo magnitude of magnetic field
C constant
e convergence criterion
E kinetic energy of meridional motion
F force
Ha Hartmann number
I current
j current density vector
L reference length
N interaction parameter
p pressure
r radius
r unit vector in radial direction
R radius of outer shell
Re Reynolds number
ro radius of rotating body
Si source term
T torque
TEM electrodynamic torque
TV hydrodynamic torque
uo velocity reference quantity
v velocity vector
V cell volume
Vr radial velocity
Vz axial velocity
V� Azimuthal/Circumferential velocity
Z total domain height
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z unit vector in the axial direction
zb contour of the rotating body

Greek letters

	 tangential layer thickness
	r radial length cell increment
	z axial length cell increment
h unit vector in the azimuthal direction
� fluid kinematic viscosity
� Archimedes’ constant
� fluid density
� electric conductivity
� shear stress
� electric potential
� angular velocity of circumferential flow

Subscripts

b boundary line
n normal component
nb neighbouring cells
p current cell
r radial component
� azimouthal/circumferential component

Superscripts

∗ initial guessed value
′ correction value
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